skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Tuo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The important mechanical parameters and their hierarchy in the growth and folding of the human brain have not been thoroughly understood. In this study, we developed a multiscale mechanical model to investigate how the interplay between initial geometrical undulations, differential tangential growth in the cortical plate, and axonal connectivity form and regulate the folding patterns of the human brain in a hierarchical order. To do so, different growth scenarios with bilayer spherical models that features initial undulations on the cortex and uniform or heterogeneous distribution of axonal fibers in the white matter were developed, statistically analyzed, and validated by the imaging observations. The results showed that the differential tangential growth is the inducer of cortical folding, and in a hierarchal order, high-amplitude initial undulations on the surface and axonal fibers in the substrate regulate the folding patterns and determine the location of gyri and sulci. The locations with dense axonal fibers after folding settle in gyri rather than sulci. The statistical results also indicated that there is a strong correlation between the location of positive (outward) and negative (inward) initial undulations and the locations of gyri and sulci after folding, respectively. In addition, the locations of 3-hinge gyral folds are strongly correlated with the initial positive undulations and locations of dense axonal fibers. As another finding, it was revealed that there is a correlation between the density of axonal fibers and local gyrification index, which has been observed in imaging studies but not yet fundamentally explained. This study is the first step in understanding the linkage between abnormal gyrification (surface morphology) and disruption in connectivity that has been observed in some brain disorders such as Autism Spectrum Disorder. Moreover, the findings of the study directly contribute to the concept of the regularity and variability of folding patterns in individual human brains.

     
    more » « less
  2. Abstract

    Uncertainties in trends of hot spot tracks are investigated using a relationship between trend uncertainty and the mapview dimensions of a hot spot track. Prior estimates of Δt(the time span averaged in estimating the trend of a hot spot track), combined with an observed average track width ofσwidth= 33 km, indicate that uncertainties in track trend are larger than estimated before, especially for hot spot tracks on slow‐moving lithosphere. Measured values ofσwidthof different hot spot tracks differ insignificantly from one another. Track widths show no significant differences between oceanic and continental tracks and between tracks of deep plumes and tracks of shallow plumes. We find that motion between groups of hot spots on different plates is slow. Nominal speeds vary from 0 to 6 mm/a with a lower bound of zero and upper bounds of 4 to 13 mm/a for the eight best constrained hot spot groups.

     
    more » « less
  3. Abstract

    The Global Moving Hotspot Reference Frame (GMHRF) has been claimed to fit hot spot tracks better than the fixed hot spot approximation mainly because the GMHRF predicts ≈1,000 km southward motion through the mantle of the Hawaiian mantle plume over the past 80 Ma. As the GMHRF is determined by starting at present and calculating backward in time, it should be most accurate and reliable for the recent geologic past. Here we compare the fit of the GMHRF and of fixed hot spots to the observed trends of young tracks of hot spots. Surprisingly, we find that the GMHRF fits the data significantly worse (p= 0.005) than does the fixed hot spot approximation. Thus, either plume conduits are not passively advected with the mantle flow calculated for the GMHRF or Earth's actual mantle velocity field differs substantially from that calculated for the GMHRF.

     
    more » « less